Except modern ARM chips are actually CISC too. Also microcode isn’t strictly RISC either. It’s a lot more complex than you are thinking.
There are some RISC characteristics ARM has kept like load-store architecture and fixed width instructions. However it’s actually more complex in terms of capabilities and instructions than pretty much all earlier CISC systems, as early CISC systems did not have vector units and instructions for example.
Yeah, they’ve gotten a bit bloated, but ARM is still a lot simpler than x86. That’s why ARM is usually higher core count, because they don’t have as many specialized circuits. That’s good for some use cases (servers, low power devices, etc), and generally bad for others (single app uses like gaming and productivity), though Apple is trying to bridge that gap.
But yeah, ARM and x86 are a lot more similar today than they were 10 years ago. There’s still a distinct difference though, but RISC-V is a lot more RISC than ARM.
Except modern ARM chips are actually CISC too. Also microcode isn’t strictly RISC either. It’s a lot more complex than you are thinking.
There are some RISC characteristics ARM has kept like load-store architecture and fixed width instructions. However it’s actually more complex in terms of capabilities and instructions than pretty much all earlier CISC systems, as early CISC systems did not have vector units and instructions for example.
Yeah, they’ve gotten a bit bloated, but ARM is still a lot simpler than x86. That’s why ARM is usually higher core count, because they don’t have as many specialized circuits. That’s good for some use cases (servers, low power devices, etc), and generally bad for others (single app uses like gaming and productivity), though Apple is trying to bridge that gap.
But yeah, ARM and x86 are a lot more similar today than they were 10 years ago. There’s still a distinct difference though, but RISC-V is a lot more RISC than ARM.