The universe is humongous.

  • The hard drive space is practically limited to the Big Bang on one end and the heat death of the universe on the other, but it contains all of the data for everything that exists. That’s massive.

  • The RAM is massive because it’s handling all the variables and changes of the present.

  • The cache is much smaller as established by the study that found the universe is not locally real. Things only happen once they are observed, but it happens almost instantaneously. Still, the cache is massive because it is handling everything that is being observed at the same time. That’s a lot of things.

All of the above are massive extremes. However,

  • The processing speed is limited at the speed of light. In comparison to the others, the speed of light is soooooo ridiculously slow, causing a bottle neck.

PS - Massive because it’s mass I’ve observed. Not really tho, you silly goat. Big bang while I swig Tang and watch a twig hang.

  • TʜᴇʀᴀᴘʏGⒶʀʏ@lemmy.blahaj.zone
    link
    fedilink
    arrow-up
    8
    ·
    edit-2
    28 days ago

    This is a misunderstanding of quantum mechanics.

    The idea that the universe is “not locally real” suggests that particles don’t have definite properties until they are measured, with their states potentially correlated over distances through quantum entanglement. This doesn’t mean that only observed things exist; rather, it indicates that certain properties are simply indeterminate until measurement (or “observation”)

    In quantum mechanics, “observation” refers to the interaction that causes a system’s wave function to collapse from multiple potential states into one actual state. This process affects the state of the system but does not imply that reality is created solely by observation, nor does it require a sentient observer

    Edit: sorry to be a party pooper! I did enjoy reading your post

    • bunchberry@lemmy.world
      link
      fedilink
      arrow-up
      2
      ·
      edit-2
      6 days ago

      Why did physicists start using the word “real” and “realism”? It’s a philosophical term, not a physical one, and it leads to a lot of confusion. “Local” has a clear physical meaning, “realism” gets confusing. I have seen some papers that use “realism” in a way that has a clear physical definition, such as one I came across defined it in terms of a hidden variable theory. Yet, I also saw a paper coauthored by the great Anton Zeilinger that speaks of “local realism,” but very explicitly uses “realism” with its philosophical meaning, that there is an objective reality independent of the observer, which to me it is absurd to pretend that physics in any way calls this into account.

      If you read John Bell’s original paper “On the Einstein Podolsky Rosen Paradox,” he never once use the term “realism.” The only time I have seen “real” used at all in this early discourse is in the original EPR paper, but this was merely a “criterion” (meaning a minimum but not sufficient condition) for what would constitute a theory that is a complete description of reality. Einstein/Podolsky/Rosen in no way presented this as a definition of “reality” or a kind of “realism.”

      Indeed, even using the term “realism” on its own is ambiguous, as there are many kinds of “realisms” in the literature. The phrase “local realism” on its own is bound to lead to confusion, and it does, because I pointed out, even in the published literature physicists do not always use “realism” consistently. If you are going to talk about “realism,” you need to preface it to be clear what kind of realism you are specifically talking about.

      If the reason physicists started to talk about “realism” is because they specifically are referring to something that includes the EPR criterion, then they should call it “EPR realism” or something like that. Just saying “realism” is so absurdly ridiculous it is almost as if they are intentionally trying to cause confusion. I don’t really blame anyone who gets confused on this because like I said if you even read the literature there is not even consistent usage in the peer-reviewed papers.

      The phrase “observer-dependence” is also very popular in the published literature. So, while I am not disagreeing with you that “observation” is just an interaction, this is actually a rather uncommon position known as relational quantum mechanics.

    • I'm back on my BS 🤪OP
      link
      fedilink
      English
      arrow-up
      3
      arrow-down
      2
      ·
      28 days ago

      Yep! The probability code is put within the quantum systems so that things are mostly predictable, but there’s still enough “randomness” to prevent a deterministic system. The cache is basically figuring out all these probabilities when interacted with plus processing the more deterministic calculations of the macro world.

      This works out. I asked Ephen Stephen, and they gave me the 👍👍